Mark Scheme Q1. | Question
Number | Answer | Mark | |--------------------|--|------| | | The only correct answer is D | (1) | | | A is incorrect because that is the symbol for a diode B is incorrect because that is the symbol for a light dependent resistor | | | | C is incorrect because that is a symbol for a motor | | Q2. | Question
Number: | Answer | Additional Guidance | Mark | |---------------------|--|--|---------------| | | an explanation linking: | throughout
accept atoms / ions for
lattice | (2)
AO 1 1 | | | | accept charges /
charged particles for
electrons | | | | collisions between electrons and lattice (1) | allow collision between electrons in this context | | | | lattice {vibrates / moves} more (1) | KE of lattice increases | | | | | KE of electrons
decreases | | Q3. | Question | Answer | Additional Guidance | Mark | |----------|---|---------------------------------|--------------------| | Number: | | | | | | an explanation linking: | allow alternative | (3) | | | | arguments such as | AO 3 2a
AO 3 2b | | | | if resistors had been in | AO 3 20 | | | | series, then | | | | | | | | | relevant calculation (1) | | | | | R (between P and Q) = $\frac{6}{1.2}$ = 5Ω | $I = \frac{6}{20} = 0.3A$ | | | | 3 1.2 | $1 - \frac{1}{20} - 0.34$ | | | | | V (between P and Q) | | | | | = 1.2 x 10 = 12V | | | | | | | | | reasoning / interpretation of result | | | | | (1) | | | | | Abia ia lasa Abaa (a sia da sasistas / | | | | | this is less than {a single resistor / two resistors in series} | current is more (than 0.3A) | | | | | | | | | | total p.d. is less than
12 V | | | | | 12 V | | | | conclusion (1) | | | | | | | | | | resistors must be connected in | | | | | parallel | | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (i) | recall and substitution
into $P = I^2 \times R$ (1)
$130 = 14^2 \times R$
rearrangement (1) | substitution and
rearrangement may be
in either order | (3) | | | $R = \frac{130}{14^2}$ | alternative route: $V (= \frac{P}{I}) = \frac{130}{14} \text{ OR } 9.3 \text{ V} $ (1) $R (= \frac{V}{I}) = \frac{9.3}{14} $ (1) | | | | evaluation to 2 sig fig (1) $(R =) = 0.66 (\Omega)$ | award full marks for the correct answer without working award 2 marks for 0.663 or 0.67 | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (ii) | | accept reverse
arguments | (2) | | | | | | | | rate of flow of charge in the immersion heater is greater | more charge per
second in the | | | | than in the kettle / heating
element (1) | immersion heater | | | | | allow (in this context)
faster (rate of) flow
in immersion heater | | | | | 14 coulombs per sec
in immersion heater
and 8.3 coulombs
per sec in kettle /
heating element | | | | the direction of the flow of
charge in the kettle / heating
element keeps changing
(whereas it remains in the
same direction in the
immersion heater) (1) | flows both ways in
the kettle / heating
element (one way in
the heater) | | | | | simply referring to
alternating current
and direct current is
not enough | | Q5. | Question
Number: | Answer | Additional Guidance | Mark | |---------------------|---------|--|----------------| | (i) | 1.5 (V) | accept $\frac{12}{8}$ or $\frac{3}{2}$ or $1\frac{1}{2}$ | (1)
AO 3 1b | | Question | Answer | Additional Guidance | Mark | |----------|--|--|---------------| | Number: | Allswei | Additional Galdance | Mark | | (ii) | | allow ecf from a(i) for all
marking points | (4)
AO 2 1 | | | recall and substitution (1) $0.75 = I \times 1.5$ | substitution and rearrangement in either order | | | | rearrangement (1) $(I =) \frac{0.75}{1.5} (= 0.5)$ | | | | | recall, substitution and rearrangement (1) $R = \frac{1.5}{0.5}$ | allow ecf of current from MP2
for this mark point only | | | | evaluation (1) | | | | | (R =) 3.0 (Ω) | allow other approaches such as $P = \frac{V^2}{R}$ scores 1 mark | | | | | $0.75 = \frac{1.5^2}{R} \text{ scores 2 marks}$ | | | | | $R = \frac{(1.5)^2}{0.75}$ scores 3 marks | | | | | award full marks for correct
answer without working | | Q6. | Question
Number | Answer | Mark | |--------------------|---|---------------| | * | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. | (6)
AO 1 2 | | | AO1(6 marks) Circuit diagram including | | | | Description of method | | | Level | Mark | Descriptor | |---------|------|---| | | 0 | No rewardable material. | | Level 1 | 1-2 | An explanation that demonstrates elements of physics
understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and
procedures lacks detail. (AO1) | | | | Presents an explanation that is not logically ordered
and with significant gaps. (AO1) | | Level 2 | 3-4 | An explanation that demonstrates physics
understanding, which is mostly relevant but may
include some inaccuracies. Understanding of scientific
ideas, enquiry, techniques and procedures is not fully
detailed and/or developed. (AO1) | | | | Presents an explanation of the procedure that has a
structure, which is mostly clear, coherent and logical
with minor steps missing. (AO1) | | Level 3 | 5-6 | An explanation that demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1) | | | | Presents an explanation that has a well-developed
structure, which is clear, coherent and logical. (AO1) | | Question
Number | Answer | Mark | |--------------------|---|------| | | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. | | | | AO1(6 marks)
AO1 | | | | earth earth wire connected to metal case metal case is a conductor (when live touches case) resistance between live and earth is very low (very) large current to earth through (low resistance) earth wire case is kept at same potential as earth so cannot get a shock if (earthed) person touches metal case | | | | made of thin wire fuse connected between live pin and wire to kettle temperature of wire depends on current in it when the current is (very) large, the temperature of the wire increases beyond melting point of wire fuse (wire) breaks disconnects mains supply to kettle prevents damage to house wiring (now) there is no possibility of live wire in kettle being at mains voltage | | ### Descriptor - No rewardable material. - Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - Presents an explanation with some structure and coherence. (AO1) - Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1) - Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1) | Summary | for guid | ance | | |---------|----------|--|---| | Level | Mark | Additional Guidance | General additional guidance - the decision within levels | | | | | e.g At each level, as well as content,
the scientific coherency of what is stated
will help place the answer at the top, or
the bottom, of that level. | | | 0 | No rewardable material. | | | Level 1 | 1-2 | Additional guidance | Possible candidate responses | | | | isolated facts about
either fuse or earth | The fuse blows when there is a fault.
The earth stops you from getting shock | | Level 2 | 3-4 | Additional guidance | Possible candidate responses | | | | facts about fuse and
earth that are linked to
provide an explanation of
the operation of either
the fuse or the earth. | The earth wire is connected to the (metal) case of the kettle. The wire in fuse melts when current becomes too big. | | | | OR | OR | | | | a well-developed
explanation of the
operation of fuse or earth | A large current flows through the wires in the kettle. The wire in the fuse heats up and melts. This disconnects the kettle from the mains supply. | | Level 3 | 5-6 | Additional guidance | Possible candidate responses | | | | explanation of the operation of both the fuse and the earth one explanation may be more developed than the other but both fuse and | A large current flows through the wires in the kettle. The wire in the fuse heats up and melts. The earth wire keeps (exposed) metal parts at earth potential and prevents shocks | Q8. | Question
Number: | Answer | Mark | |---------------------|--|---------------| | (i) | C 6.0 joules per coulomb The only correct answer is C | (1)
AO 1 1 | | | A is not correct because 1 volt is 1 joule per coulomb B is not correct because 1 volt is 1 joule per coulomb D is not correct because 1 volt is 1 joule per coulomb | | | Question
Number: | Answer | Additional Guidance | Mark | |---------------------|---|---|-------------------------| | (ii) | recall and substitution (1) $42 = \frac{200 \times t}{(1000)}$ | accept substitution and rearrangement in either order | (3)
AO 1 1
AO 2 1 | | | rearrangement (1)
$t = \frac{42 (\times 1000)}{200 (\times 60)}$ | 2.1 to any power of 10 or 3.5 to any power of 10 scores 2 marks | | | | evaluation (1)
(t =) 3.5 (minutes) | 3 minutes 30 seconds
award full marks for
correct answer without
working | | | Question | Answer | Additional Guidance | Mark | |----------|-----------------------------|--|--------| | Number: | | | | | (iii) | recall and substitution (1) | | (2) | | | | (using E = VIt) | AO 1 1 | | | (E =) 42 x 6.0 | (E =) 6.0 x 200 (x 10 ⁻³) x
2.10 (x 10 ²) | AO 2 1 | | | evaluation (1) | | | | | (energy =) 250 (J) | accept 252 (J) | | | | | award full marks for
correct answer without
working | | Q9. | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | (i) | | Award full marks for correct answer with no working | (3) | | | Substitution (1)
2900 = 230 × current | Allow substitution and transposition in either order | | | | Transposition (1) 2900 230 | Ignore powers of ten errors until evaluation | | | | Evaluation (1)
13 (A) | Allow numbers which round up to 13 | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | (ii) | | Award full marks for correct
answer
with no working | (3) | | | Substitution (1)
97 = 2.9 × time × 17 | Allow substitution and transposition in either order | | | | Transposition (1) 97 OR 97 2.9 x 17 49.3 | Ignore powers of ten errors until evaluation | | | | 2.9 × 17 49.5 | Allow <u>97</u> = 5.7 for 1 mark
17 | | | | Evaluation (1)
2.0 (h) | Allow numbers which round up to 2.0 | | # Q10. | | Answer | Acceptable answers Mark | | |----------|--|--|------------| | (a)(i) | C | | (1) | | (a)(ii) | В | | (1) | | (b) | substitution (1) | | (2) | | | 3.7 x 13 | | | | | evaluation (1) | 48.1 | | | | 48 (C) | Correct answer with no | | | | | calculation scores 2 marks | | | (c)(i) | Correct responses can be seen in (i) or (ii) | | (2) | | | An explanation linking | ["positive electrons/ protons moving", seen anywhere in part (i) or (ii) loses | | | | • <u>electrons</u> (1) | this mark] | | | | and <u>one</u> of | ignore reference to charge before
rubbing | | | | • removed by friction (1) | transferred from cloth | | | <u> </u> | I | | ! <u> </u> | theonlinephysicstutor.com | | | • (transferred) <u>to</u> plastic (1) | | | |---|---------|---|--------------------------------------|-----| | Γ | (c)(ii) | opposite to charge on plastic (1) | charge on cloth is positive | (2) | | | | | · | | | | | egual to charge on the plastic (1) | same size as charge on plastic | | | | | = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 | <u> </u> | | | | | | electrons transferred from the cloth | | | | | | equal to electrons lost by cloth | | | L | | | equal to electrons lost by cloth | | Total question = 8 marks ### Q11. | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (i) | recall and substitution into V = IR (1) $5.0 = 0.26 \times R$ | accept substitution
and rearrangement in
either order | (3) | | | rearrangement (1) $(R=) \frac{5.0}{0.26}$ | (R=) ^V ₁ | | | | | $\frac{5.0}{0.26}$ scores 2 marks | | | | evaluation (1) | | | | | 19 (Ω) | accept answers that
round to 19 (Ω) (e.g.
19.23) | | | | | accept answer written
table if not written on
answer line. | | | | | award full marks for
the correct answer
without working | | | Question | Answer | Additional guidance | Mark | |----------|---|---|------| | Number | | | | | (ii) | a comment that includes the following points idea that resistance increases | | (3) | | | with potential difference (1) | | | | | idea that doubling the potential
difference does not result in
doubling of resistance (1) | idea that equal
increments of
potential difference
do not cause equal
increments of
resistance | | | | | reverse argument e.g.
if student was correct
then equal
increments of p.d.
would cause equal | | | | OR | increment of resistance | | | | V = constant x R is not supported
by this data (1) | if student was correct
then current would
be constant | | | | correct processing of data from
the table to support either of the
above mark points (1) | ignore simple quoting
of data for this mark | | | Ousstie | A | Additional cuitions | tneor | |--------------------|-------------------------------|--|-------| | Question
Number | Answer | Additional guidance | Mark | | | A description that includes | marks may be obtained | (2) | | (iii) | A description that includes | marks may be obtained | (2) | | | | from a circuit diagram | | | | add a variable resistor (1) | rheostat | | | | add a variable resistor (1) | meostat | | | | with | | | | | | | | | | in series (with the lamp / | accept | | | | power supply) (1) | between / before / after | | | | | for in series | | | | OR | | | | | add a potential divider (1) | potentiometer | | | | add a potential divider (1) | potentiometer | | | | with | | | | | | | | | | in parallel with power supply | across the power supply | | | | (1) | | | | | | ignore replacing power | | | | | supply / using fixed | | | | | resistor(s) / LDR / | | | | | thermistor | | | | | in both cases second | | | | | in both cases, second
mark conditional on first | | | | | mark | | | | | mark | | # Q12. | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--------------------|--------------------|------| | (a) | C (gain electrons) | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | (b) | (Force of) attraction (1) (plates have) opposite charge (to dust) (1) . | Plates have a positive charge
Ignore different charge | (2) | | Question | Answer | Acceptable answers | Mark | |----------|---------------------------------|-----------------------------|------| | Number | | | | | (c)(i) | transferred to plate / lost (1) | neutral / become discharged | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|------------------------------|------| | (c)(ii) | An explanation linking any two of | | (2) | | | Metal is a conductor (1) | Metal not an insulator | | | | Electrons / (negative) charge moves (through the plates/ wire) (1) | | | | | Towards the voltage
supply / earth /ground
(1) | Plates / charges are earthed | | | Question
Number | Answer | | Acceptable answers | Mark | |--------------------|--|------------|---|------| | (d) | Substitution:
$Q = 1.2 \times 10^{-3} \times 40$
Evaluation: | (1) | Give 2 marks for correct answer with no working shown | (3) | | | 0.048 or 4.8 x 10 ⁻²
C / coulombs | (1)
(1) | Unit mark is independent Allow for 1 mark 48 (with incorrect or no units) Allow for 2 marks 48 C Allow for all 3 marks 48 mC | | Q13. | Question
Number | Answer | | Acceptable answers | Mark | |--------------------|----------------------|-----|--|------| | (a)(i) | 60 (kW h/ units) | (1) | 15459 - 15399 | | | | 60 x 20 (= 1200) (p) | (1) | £12 ecf | | | | | | Award full marks for correct answer with no working | | | | | | £12 scores 2
Power of Ten error scores
maximum 1 | | | | | | 60 in answer space with no working scores 1 | (2) | | Question
Number | Answer | | Acceptable answers | Mark | |--------------------|-------------------|------------|---|------| | (a)(ii) | 60 / 15
4 (kW) | (1)
(1) | Allow ecf from 6(a)(i) marking point 1 | | | | | | Award full marks for correct answer with no working | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | (b) | An explanation linking any two of: | | | | | • increase voltage (1) | | | | | decrease current (1) | | | | | reduce {loss / waste} of
{energy / heat} (1) | Increase efficiency (of energy transmission) | | | | | Ignore "more efficient" by itself | | | | | Accept power instead of energy
Accept no energy loss | (2) | | Questi | on | Indicative content | Mark | |--------|-------|---|------| | Numbe | r | | | | QWC | * (c) | A description to include some of the following points | | | | | Ignore • irrelevant information | (6) | | | | speeds up current or more electricity | | | Level | 0 | no rewardable material | | | 1 | 1-2 | a limited description of any one change e.g. use more coils OR a stronger magnet. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited | | | 2 | 3-4 | a simple description of any two different changes OR one change and its effect e.g. use more coils and a weaker magnet OR more coils more current the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately | | | 3 | 5 - 6 | | | Q14. | Question | Answer | Acceptable answers | Mark | |----------|--------|--------------------|------| | Number | | | | | (a)(i) | В | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | (a)(ii) | substitution V = 0.039 x 185 (1) evaluation 7.215 (which is about 7.2) (V) (1) | Substitution 7.2 = I x 185 (1) transposition I = 7.2 ÷ 185 (1) | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|-------------|--------------------|------| | (a)(iii) | C (same as) | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---------------------------------------|--------------------------------------|------| | (a)(iv) | An explanation to include | | (2) | | | The resistance (of the LDR) changes | | | | | Greater resistance when in the dark | LDR has less resistance in the light | | | | | | | | Question
Number | | Indicative Content | Mark | |--------------------|-------|--|------| | QWC | *(b) | An explanation linking some of the following. | (6) | | | | less current is used at night-time Resistance (of LDR or circuit) would increase with less ambient light | | | | | Higher resistance will allow less current (in the circuit) (ORA) . | | | | | Less current in circuit means less energy from the battery Less power required in the dark ORA for light conditions Less current means less energy transferred (per second) Total energy transferred is less during night time (than it would otherwise have been) due to the higher resistance of the LDR | | | Level | 0 | No rewardable content | | | 1 | 1 - 2 | | | | 2 | 3 - 4 | A simple explanation linking the light level to TWO of resistance, current, energy. eg. At night-time its resistance would increase. This would reduce the current from the battery the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy | | | 3 | 5 - 6 | A detailed explanation linking the light level to resistance AND current, AND energy. e.g. At night-time the resistance would be more. This would reduce the current and mean that the battery will not have to supply as much energy. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors | |