Name:
Circuits
Mark Scheme
Date:
Γime:
Total marks available:
Total marks achieved:

Mark Scheme

Question Number	Acceptable answers	Additional guidance	Mark
	A The p.d. across the resistor added to the p.d. across the thermistor must		1
	equal 6 V. This occurs when the current is 0.5 A.	0.5	
	B assumes all the p.d. is across the thermistor		
	C assumes that resistor and thermistor connected in parallel		
	D assumes that the p.d. across the resistor and thermistor is more than 6 V		

Q2.

Question Number	Acceptable Answer	Additional Guidance	Mark
	Ammeter in series with LED and voltmeter in parallel with LED (1)		1

Q3.

Question Number	Answer	Mark
	D Step 4	1
	Incorrect Answers:	
	A – this step uses the conservation of energy	
	B – this step is just a statement of Ohm's law	
	C – this step uses the conservation of energy	

Q4.

Question Number	Answer	Mark
	C	1

Q5.

theonlinephysicstutor.com

Question	Answer	Mark	1
Number			
	D 1080 C	1]
	Incorrect Answers:		1
	A – current divided by time, with the time in seconds		l
	B – current divided by time, with the time in minutes		l
	C - correct formula of current × time but the time is in minutes and not seconds		l

Q6.

Question Number	Acceptable answers	Additional guidance	Mark
	A uses the parallel resistors equation $\frac{1}{R_T} = \frac{1}{R} + \frac{1}{R} = \frac{2}{R}$	$\frac{R}{2}$	1
	B assumes resistors in parallel have the same total R as each individual R C is the addition of both resistances as if they were in series D is the product of both resistances		

Q7.

Question Number	Answer	Mark
	В	1

Q8.

Question Number	Answer	Mark
	В	1

Q9.

Question Number	Answer	Mark
	В	1

Question	Answer		Mark
Number			
	$I_3 = I_2 + I_1$ (possible reference to $(Q/t)_1$ etc accepted)	(1)	
	Charge is conserved Or Conservation of charge Or charge into point = charge		
	out of point Or no charge lost	(1)	
	Correct reference to same time	(1)	3
	(e.g. same charge etc in same time Or $(Q/t)_3 = (Q/t)_1 + (Q/t)_2$ etc)		
	Total for question		3

Q11.

Question	Answer		Mark
Number			
	current same in series Or current is different if not in series	(1)	1
	to ensure the total resistance in the circuit isn't increased Or to ensure no pd		
	lost	(1)	
	because that would reduce the current being measured	(1)	3
	[Just saying current changes or resistance changes is not sufficient for MP2 and		
	3. Candidates who only refer to what would happen if ammeter in parallel can		
	only score MP1]		
	Total for question		3

Q12.

Question Number	Acceptable Answer		Additional Guidance	Mark
	The replacement charger will still have to supply the same charge (6510 C)	(1)	MP1: may be awarded for use of 6510 C in a calculation for MP2	
	The replacement charging plug takes more time to charge Or the old charging plug takes less time to charge	(1)	MP2 calculation to support this using t = Q/I Or if the phone uses 1A the time to charge will	
	Replacement charging plug uses a lower current therefore reduces heating effect	(1)	be the same	
	The phone may try and draw a current of 1 A which may damage the charging plug	(1)		4

Question Number	Acceptable Answer		Additional Guidance	Mark
(i)	Use of 3600 × W h to give energy stored = 24 900 (J)	(1)	Example of calculation 6.91 W h = 6.91 × 3600 s = 24 876 J	1

Question Number	Acceptable Answer	Additional Guidance	Mark
(ii)		Example of calculation	
(11)	• Use of $V = W/Q$ (1)	$Q = \frac{24876 \text{ J}}{3.82 \text{ V}} = 6512 \text{ C}$ (ecf for calculated energy from	
	• $Q = 6510 \text{ C}$ (1)	(a)(i))	
		(show that value gives $Q = 6545$ C)	2

Question Number	Acceptable Answer	Additional Guidance	Mark
(iii)	• Use of $Q = It \text{ Or } W = VIt$ (1)	Example of calculation $t = \frac{6512 \text{ C}}{0.9 \text{ A}} = 7235.6 \text{ s}$ $t = \frac{7235.6 \text{ s}}{3600} = 2.01 \text{ h}$	
	• Use of $\frac{\text{time in seconds}}{3600}$ (1) • $t = 2.0 \text{ (h)}$	(ecf for calculated charge from (a)(i))	
	(-)	(show that value gives $t = 2.02 \text{ h}$)	3

Q14.

theonlinephysicstutor.com

Omestica	Anomon	theonlinep	
Question Number	Answer		Mark
(a)	Series sketch with two bulbs	(1)	
	Connected in series:		
	because when one is removed there is a break in the circuit		
	Or		
	because when one is removed there is no current		
	Or		
	so the bulbs could have different p.d.s	(1)	
	Not connected in parallel because:		
	if one removed, still complete circuit (for the other)		
	Or		
	if one removed, still current (through the other)		
	Or	(4)	2
	full mains voltage would have blown small bulb	(1)	3
(b) (i)	Use of $P = IV$	(1)	<i>y</i>
	I = 0.17 (A) (at least 2 sf required)	(1)	2
	Example of calculation		
	$40 \text{ W} = I \times 230 \text{ V}$		
	I = 0.17 A		
(b)(ii)	Use of appropriate equation	(1)	
	$R = 1300 \Omega$	(1)	2
	Example of calculation		
	$P = V^2/R$		
	$40 \text{ W} = (230 \text{ V})^2 / R$		
(I-) (!!!)	$R = 1323 \Omega$ Use of $R = V/I$	(1)	
(b)(iii)	$R = 13 \Omega$	(1) (1)	2
	K = 13 32	(1)	2
	Example of calculation		
	R = 2.5 V / 0.2 A		
	$R = 12.5 \Omega$		
(c)	Current – both require about the same (not just both have 0.2 A)	(1)	
	Potential difference – total (required) p.d. is very close to mains supply		
	Or	(1)	2
	(operating) p.d. for mains bulb much greater than (operating) p.d. for torch bulb	(1)	2

theonlinephysicstutor.com

(4)		meommet	ynysi
(d)	Lower resistance	(1)	
	(smaller current, so) lower temperature (so less vibration of lattice ions) Or (smaller current, so) smaller drift velocity	(1)	
	fewer collisions of electrons with lattice ions Or less frequent collisions of electrons with lattice ions	(1)	
	Less energy dissipation (as heat) Or less ke lost in collisions	(1)	4
	Total for question		15