Mark Scheme Q1. | Question
Number | Acceptable Answers | Additional guidance | Mark | |--------------------|--|---------------------|------| | | An image formed from the apparent divergence of light rays from a single point Or an image that cannot be projected on to a screen | | 1 | Q2. | Question
Number | Acceptable Answers | Additional guidance | Mark | |--------------------|---|---------------------|------| | | Light rays pass through the image Or | | , | | | Light rays converge to a point (1)
where the image is formed | | 1 | Q3. | Question
Number | Acceptable Answers | | Additional guidance | Mark | |--------------------|--|-----|---|------| | | increases the power (of the eye) Or to decrease the image distance Or to shorten the focal length (of the eye and lens) Or to the eye it makes the rays appear to come from an object further away | (1) | If a candidate states that the image is formed at the focal point or that the retina is at the focal point do not award this mark | 1 | Q4. | Question
Number | Acceptable answers | Additional
guidance | Mark | |--------------------|---|---|------| | | Pass light through one lens of the glasses and view the light through the lens of the second pair of glasses. Rotate one pair of glasses through 90° (1) If the light intensity varies then the glasses use polarising filters (1) | Allow full credit for
a suitably annotated
diagram. | 2 | Q5. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|-----|--|------| | | • Use of $n = c/v$ | (1) | Example of calculation
$1.52 = 3.00 \times 10^8 \text{ m s}^{-1} / v$ | | | | • $v = 2.0 \times 10^8 \mathrm{m \ s^{-1}}$ | (1) | 1.97 × 10 ⁸ m s ⁻¹ | 2 | Q6. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|-----|---|------| | | • Use of $n = c/v$ | (1) | Example of calculation $v = c/n$ | | | | • $v = 2.1 \times 10^8 \text{ m s}^{-1} \text{ (allow ecf from (a))}$ | (1) | = $3.00 \times 10^8 \text{ m s}^{-1} / 1.42$
= $2.11 \times 10^8 \text{ m s}^{-1}$ | 2 | Q7. | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|--|---|------| | | Use of trigonometry to determine angle
of ray to normal in liquid | Example of calculation
$(10.2 - 4.0) \div 2 = 3.1 \text{ cm}$ | | | | • Use of n sin θ = constant (1) | $\tan \theta = 3.1 \text{ cm} / 35 \text{ cm}$
$\theta = 5.06^{\circ}$ | | | | • $n = 1.42$ (1) | $n = \sin 7.2^{\circ} / \sin 5.06^{\circ}$
n = 1.42 | 3 | Q8. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|--|-------------------|---|------| | | Use of lens equation 1/f = 1/v + 1/u Use of magnification = v/u Magnification = 15 | (1)
(1)
(1) | Example of calculation
1/17.9 mm = 1/v + 1/16.7 mm
v = (-)249 mm
magnification = 249 mm / 16.7 mm
= 14.9 | 3 | Q9. | | | Additional guidance | Mark | |--|------------|---|------| | • Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ with $u = 100$ and $v = (-)300$ | (1) | (MP3 dependent on MP2) | | | f = 150 (mm) converging lens with focal length 150 mm | (1)
(1) | $\frac{\text{Example of calculation}}{\frac{1}{f}} = \frac{1}{100 \text{ mm}} - \frac{1}{300 \text{ mm}}$ | | | | | $\frac{1}{f} = \frac{3 - 1}{300 \text{ mm}}$ $f = 150 \text{ mm}$ | | | | | MP3 accept if annotated in question
Accept convex for converging | 3 | Q10. | Question
Number | Acceptable Answers | Additional guidance | Mark | |--------------------|--|---|------| | | • Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ (1)
• $f = 8.0 \times 10^{-2} \text{ m}$ | Example of calculation $\frac{1}{f} = \frac{1}{0.09 \text{ m}} + \frac{1}{0.75 \text{ m}}$ $f = 8.00 \times 10^{-2} \text{m}$ | 2 | ## Q11. | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|--|---------------------|------| | | Light strikes the edges of the long
crystals at angles greater than the
critical angle | | 2 | | | It is repeatedly totally internally reflected along the crystal | | | ### Q12. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|------------|---|------| | | • Use of $P = \frac{1}{f}$
• 1220 (mm) | (1)
(1) | Example of calculation $0.82 D = 1/f$ $f = 1 / 0.82 D = 1.22 m$ Accept 122 (cm) | 2 | ## Q13. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|------------|--|------| | | difference in speed for air to comea much greater than difference in speed from water to comea Or lower refractive index for water to comea (= 1.03) so less refraction Or so power of eye/comea reduced Or so focal length of eye/comea increased | (1)
(1) | MP1: Seeing values of refractive index as 1.03 and 1.38 is not enough, a comparison is required. | | | | if goggles worn the interface is with air
and refraction is as normal Or if goggles worn the interface is with
air and image focused on retina | (1) | | 3 | Q14. | Question
Number | Acceptable Answer | | Additional Guidance | Mark | |--------------------|---|-----|--|------| | | Use of $m = \frac{\text{image height}}{\text{object height}}$ | (1) | | | | | • Use of $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ | (1) | For MP2 allow $(u \approx f, \text{ so}) v = f \times \text{magnification}$ | | | | • ∴ v = 28 m | (1) | | 3 | | | | | Example of calculation $ \frac{v}{u} = \frac{h_{i}}{h_{o}} = \frac{0.75 \text{ m}}{4.0 \times 10^{-3} \text{m}} = 187.5 $ $ \frac{1}{u} + \frac{1}{v} = \frac{1}{f} $ $ \therefore \frac{v}{u} + 1 = \frac{v}{f} $ $ \therefore v = (187.5 + 1) \times 15.0 \times 10^{-2} \text{m} = 28.3 \text{ m} $ | | Q15. | Question
Number | Acceptable Answers | | Additional guidance | Mark | |--------------------|--|------------|------------------------------|------| | | Two straight lines drawn extrapolated from diverging rays meeting at a single point on the principal axis focal length = (-) 2.3 to 2.4 cm | (1)
(1) | Accept dotted or solid lines | 2 | Q16. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|------------
---|------| | (i) | the angle of incidence in an (optically) denser medium at which the angle of refraction (in the less dense medium) is 90° Or the greatest angle of incidence in an (optically) denser medium at which there is an emergent ray (into the less dense medium) Or the greatest angle of incidence in an (optically) denser medium at which there is a refracted ray (in the less dense medium) | (1) | Other equivalent answers may be given Do not accept answers stating or implying that the critical angle is the smallest angle at which total internal reflection occur, e.g., 'The smallest angle at which t.i.r. takes place', but do not automatically exclude answers on the basis of mentioning internal reflection alone without the inclusion of 'total' 'The greatest angle before t.i.r. takes place' is not sufficient | 1 | | (ii) | Use of sin C = 1 / n C = 41° | (1)
(1) | Example of calculation
$\sin C = 1/1.52$
$C = 41.1^{\circ}$ | 2 | ### Q17. | Question
Number | Acceptable Answe | r | Additional Guidance | Mark | |--------------------|---|----|---|------| | | • use of $n = c/v$ (• use of sin $C = 1/n$ (| 1) | Example of calculation
$n = (3.00 \times 10^8 \text{ m s}^{-1}) / (2.25 \times 10^8 \text{ m s}^{-1})$ | | | | . C = 40.00 as TID | 1) | n = 1.33 | | | | does not occur | 1) | $\sin C = 1 / n = 1 / 1.33$
$C = 48.8^{\circ}$ | | | | | | | | | | | | | (3) | ### Q18. | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|--|--|------| | | use of 1/v + 1/u = 1/f (1) use of magnification = v/u (1) | Example of calculation
1/v = 1/7.0 - 1/5.0
v = 17.5 cm
M = 17.5 / 5.0 = 3.5 | | | | magnification = 3.5 (1) | | 3 | ### Q19. | Question
Number | Acceptable Answers | | Additional guidance | Mark | |--------------------|--|-------------------|--|------| | | Use of \(\frac{1}{u} + \frac{1}{v} = \frac{1}{f}\) Use of \(P = \frac{1}{f}\) \(P = 46 \text{ D / Dioptre / dioptre}\) | (1)
(1)
(1) | Accept MP2 if you see $\frac{1}{25}$ or $\frac{1}{2.4}$ for $\frac{1}{f}$ Example of Calculation $\frac{1}{0.25} + \frac{1}{0.024} = 46 \text{ D}$ | 3 | ### Q20. | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|--|---|------| | (i) | measure angle of incidence at edge (53°) (1) use of n₁ sinθ₁ = n₂sinθ₂ (1) value of angle in glass = 32° (1) | $\pm 1^{\circ}$ tolerance
Allow ecf for candidate's value
Example of calculation:
$1 \times \sin 53^{\circ} = 1.5 \times \sin \theta_2$
$\theta_2 = 32^{\circ}$ | 3 | | (ii) | show refraction towards normal entering glass and
how refraction away from normal exiting glass (1) | | 1 | ### Q21. | Question
Number | Answer | Mark | |--------------------|--|------| | (a) | Change in direction of wave (accept ray or any named wave) | | | | (do not accept bend) (1) | | | | (Due to) change in (optical) density / speed / medium (1) | 2 | # $th\underline{eon line} physic stutor.com$ | Question | Answer | | Mark | |----------|---|------------|------| | Number | | | | | (b) | There is no change in direction for the light (passing between the water and the gel) Or There is no refraction (as the light passes between the water and the gel) (accept within the beaker) | (I) | | | | The light must have the same/similar wave speed in the water and gel (accept same/similar density for water and gel) | (1)
(1) | 2 | ## Q22. | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-------------------|---|------| | (i) | Appropriate line of best fit | (1) | | 1 | | (ii) | Calculates a gradient using at least half the drawn line η=1.37 to 1.47 leading to a conclusion that glass is silica Or conclusion consistent with their value for η | (1)
(1)
(1) | $\frac{\text{Example of calculation}}{\frac{0.9 - 0.05}{0.58}} = 1.47 \text{ silica}$ | 3 | ### Q23. | Question
Number | Acceptable Answer | | Additional Guidance | Mark | |--------------------|---|-----|--|------| | | use of 1/v + 1/u = 1/f and P = 1/f to determine power required | | Example of calculation
1/f = 1/0.02 cm + 1/0.275 cm
f = 0.0186 cm
P = 1/f = 53.6 D
For person, $P = 1/0.0193$
= 51.81 | | | | use of P = 1/f to determine
power of person's lens | (1) | Spectacle power = 53.63 -
51.81 = 1.82 D
Choose +2.0 D | | | | use of P = P₁ + P₂ to
determine additional power
required | (1) | | | | | • P = 1.82 (D) | (1) | | (4) | ## theonlinephysicstutor.com | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|--|--------------------------|--|------| | | use of P = 1/f use of P = P₁ + P₂ etc total power = 63.8 (D) Comparative statement consistent with their values | (1)
(1)
(1)
(1) | MP4 An attempt at a % must be made and a clear comparison with the 80% must be made e.g % for comea from $44.8 / 63.8$ is 71% which is not 80% so no Example of calculation $P_{\text{comea}} = 1/0.0223 \text{ m} = 44.84 \text{ D}$ $P_{\text{lens}} = 1/0.0527 \text{ m} = 18.98 \text{ D}$ Total power = 63.82 D | 4 | ## Q25. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|--------------------------|--|------| | (i) | • Rays from (a point) on the moon are <u>parallel</u> • So the rays converge to the principal focus Or so the image is formed at the principal focus Or • Use of ¹/_f = ¹/_u + ¹/_v with u=∞ or very large • f = v | (1)
(1)
(1)
(1) | Description of focal length as: the distance between the lens and point at which parallel rays will converge (after passing through lens), scores 2 Accept focal point for principal focus (MP2 dependent on MP1) | | | | | | | 2 | | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|------------------------|---|------| | (ii) | Real
Diminished (2) | One/Two properties scores 1 mark Three properties score 2 marks | | | | Inverted | Accept smaller
Accept upside down | , | Q26. | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------
---|---------------------|------| | (i) | Two construction rays from: ray from tip of object parallel to principal axis drawn then refracted through the focal point (1) ray drawn from tip of object through centre of lens (1) ray drawn from focal point through tip of object and then refracted parallel to the principal axis (1) And rays extended back to locate tip of image on the same side as the object (1) | Example of diagram: | 3 | | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|--|--|------| | (ii) | Use of m = v/u (1) Use of \(\frac{1}{u} + \frac{1}{v} = \frac{1}{f}\) and substituting for v or u (1) u = 6.1 cm (1) | Example of calculation:
$\frac{v}{u} = -3.5 \therefore v = -3.5u$ $\frac{1}{u} + \frac{1}{-3.5u} = \frac{1}{8.5} \therefore \frac{3.5 - 1}{3.5u} = \frac{1}{8.5} \qquad \therefore \frac{3.5u}{2.5} = 8.5$ $u = \frac{8.5 \times 2.5}{3.5} = 6.07 \text{ cm}$ | 3 | Q27. | 0 1 | | | 4.7314 3 43 | | |----------|--|-------------------|--|---| | Question | Acceptable Answers | | Additional guidance | | | Number | | | | | | (i) | One ray correctly drawn Second ray correctly drawn Completes diagram with image at position 3.6 to 3.8 cm and height of 0.7 to 0.8 cm | (1)
(1)
(1) | | 3 | | (ii) | Use of m = v/u or m = image height object height using values from (a)(i) Magnification of 0.47 to 0.53 | (1)
(1) | Example of Calculation $m = \frac{v}{u} = \frac{3.7}{7.5} = 0.5$ | 2 | | (iii) | Real and image on different side of converging lens to object Or rays pass through the image | (1) | | 1 | ### Q28. | Question
Number | Acceptable Answers | | Additional guidance | Mark | |--------------------|---|-----|---|------| | (i) | Use of n₁ sin θ₁ = n₂ sin θ₂ using angle of incidence = 20° r(blue) = 31.3° and r(red) = 31.1° | (1) | Example of Calculation
sinr(blue) = 1.517sin20 = 0.519
$r(blue)=sin^{-1}(0.519) = 31.3^{\circ}$ | | | | Or Calculates difference between $r(\text{blue}) \text{ and } r(\text{red}) = 0.2^{\circ}$ | (1) | $\sin r (\text{red}) = 1.509 \sin 20 = 0.516$
$r (\text{red}) = \sin^{-1}(0.516) = 31.1^{\circ}$ | | | | Compares their answer to an
uncertainty of protractor of 0.5°
with conclusion consistent with
their answer | (1) | 31.3° - 31.1° = 0.2°
0.2° < 0.5° so protractor is
unsuitable | 3 | theonlinephysicstutor.com | (ii) | Either | | Example of Calculation | | |------|---|------------|---|---| | | Use of sinC = 1/n 41.5° Compares their answer to 35° and concludes that red light is not totally internally reflected or conclusion consistent with their answer | (1)
(1) | $\sin C = \frac{1}{1.509} = 41.5^{\circ}$ $C > 35^{\circ}$ so red light is not totally internally reflected | | | | Or Use of n₁ sin θ₁ = n₂ sin θ₂ with 35° and n=1 60° Compares their answer to 90° with conclusion that red light is refracted or conclusion consistent with their answer | (1)
(1) | | 3 | Q29. | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---|--|------| | (i) | An explanation that makes reference to: | These marks can be awarded only for answers in the context of the method described in the question. | | | | holding the lens steady in your hand would be
difficult and would make the distance
measurement inaccurate (1) | | | | | so the lens should be in a holder on a stable
surface to make the measurement accurate (1) OR | Reference to use of an optical
bench is acceptable.
Reference to use of a clamp is | | | | holding the ruler steady parallel to the principal
axis would be difficult and make the distance
measurement inaccurate (1) | acceptable. | | | | so the ruler should be on a stable surface to
make the measurement accurate (1) | | | | | OR | | | | | focal length is image distance when
object distance is infinite (1) | | 2 | | | this is not at infinity so lens
formula should be used (1) | | | | (ii) | use of power = 1/focal length (1) calculates at least two powers correctly (1) analyses data to compare powers or focal lengths (1) | This is a comparison, so use of cm not penalised if used for all and unit D is not required. MP3 calculates combined power and uses it to calculate focal length for the combination and compares this with the measured value of focal length. | | | | draws a conclusion that is
consistent with calculated values
about how well the relationship is
supported (1) | Example of calculation: P = 1/f power lid = 1/0.12 = 8.3 D power optional = 1/0.175 = 5.7 D power combined = 1/0.07 = 14 D 8.3 + 5.7 = 14 D | 4 | Q30. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|-------------------|--|------| | | Two rays correctly drawn including extrapolation Completes diagram with image at 10.6 cm (range 9.0 cm to 12.0 cm) Magnification = 3.8 (3.5 to 4.0) Conclusion consistent with values for distance and M | (1)
(1)
(1) | Acceptable rays: • from arrowhead on object through the optical centre of the lens • from arrowhead on object parallel to the axis up to the lens and then through the principal focus on the other side • from the principal focus on the same side and through the arrowhead on the object to the lens and then parallel to the axis Example of calculation M = image size / object size (accept use of distances) = 8.0 cm / 2.0 cm = 4.0 | 4 | ### Q31. | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|--------------------------------|---|------| | (i) | • use of $1/f = 1/u + 1/v$ (1) | Example of calculation
1/1.6 cm = 1/u + 1/2.4 cm | | | | • $u = 4.8 \text{ cm}$ (1) | u = 4.8 cm | 2 | | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|---|---|------| | (ii) | • use of $n = c/v$ (1)
• use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$
Or $n = \sin i/\sin r$ with correct angles
• $\theta = 11^\circ$ (1) | Accept use of $v_2 \sin\theta_1 = v_1 \sin\theta_2$ for MP1 and MP2
but $v_1 \sin\theta_1 = v_2 \sin\theta_2$ scores neither Example of calculation
$n = 3 \times 10^8 \text{ m s}^{-1} / 2.18 \times 10^8 \text{ m s}^{-1}$
= 1.376
$1 \times \sin 15^\circ = 1.376 \times \sin \theta$
$\theta = 10.8^\circ$ | 3 | ### Q32. | Question
Number | Acceptable Answer | | Additional Guidance | Mark | |--------------------
---|-----|--|------| | | increasing the current
through the coil
increases the heating
effect | (1) | | | | | this causes the
resistance of the coil to
increase (due to the
collisions between
conduction electrons
and lattice ions) | (1) | | | | | so for a given p.d. this
would result in the
current decreasing | (1) | | | | | this would increase the
focal length of the lens,
hence the need to limit
the current | (1) | MP4 conditional
mark, dependent on
MP3 being awarded | (4) | ## Q33. | Question
Number | Acceptable Answers | Additional guidance | Mark | |--------------------|---|---|------| | | • Use of $m = \frac{v}{u}$ (to calculate m) (1) • Use of $m = \frac{\text{image height}}{\text{object height}}$ to calculate distance between dots on screen (1) • Uses tan/sin or small angle approximation to calculate the angle (1) | Example of calculation $m = \frac{0.75 \text{ m}}{0.09 \text{ m}} = 8.3$ Image height = 8.3 x 0.005 m = 0.042 (m) $\tan(\frac{\theta}{2}) = \frac{0.042/2 \text{ m}}{4.5 \text{ m}}$ $\theta = 0.5^{\circ} = \frac{0.5\pi}{180} \text{ rads} = 0.0092 \text{radians}$ | | | | Answer consistent with their calculation (1) | 0.009 radians > 0.0003 radians so
student can distinguish between the dots | 5 | | | • Comparison with 0.0003 radians or 0.017° and conclusion consistent with their value for θ (1) | | 5 | ### Q34. | Question | Acceptable Answers | Additional guidance | Mark | |----------|---|--|------| | Number | imaaa haiaba | 7 | | | | • Use of $m = \frac{image\ height}{object\ height}$ | Example of Calculation | | | | . II C V | $m = \frac{3.5 \times 10^{-3} \mathrm{m}}{2.0 \times 10^{-4} \mathrm{m}} = 17.5$ | | | | • Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ | $v = 17.5 \times 5.0 \times 10^{-2} \text{m} = 0.875$ (m) | | | | • Use of $P = \frac{1}{f}$ | $\frac{1}{f} = \frac{1}{5.0 \times 10^{-2} \mathrm{m}} + \frac{1}{0.875 \mathrm{m}}$ | | | | • 21 D | 1) $ P = \frac{1}{0.047 \text{ m}} = 21.1 \text{ D} $ | 5 | ## Q35. | Question
Number | Acceptable Answers | | Additional guidance | Mark | |--------------------|---|---------------------------------|---------------------|------| | | Light is refracted as it passes into medium 2 Angle of refraction may be calculated using n₁sinθ₁ = n₂sinθ₂ Angle of refraction = 89.81° Angle of incidence at layer 2-3 is greater than the critical angle So total internal reflection occurs (at layer 2-3 interface) So light/ rays appear to come from surface of road (so that observer sees mirage) | (1)
(1)
(1)
(1)
(1) | | 6 | Q36. | Answer | | Mark | |---|---|---| | Measure angles of incidence and refraction (clear variants accepted or correct angles shown on a diagram)('i' and 'r' accepted) | (1)
(1) | | | Plots $\sin i$ vs $\sin r$
Correct gradient identified for their graph (assume $\sin i$ on y axis unless stated otherwise, assume statements using 'vs' or 'against' state y axis first)
[If angle of reflection referred to instead of refraction, only allow 2^{nd} mark]
(Allow 3^{rd} but not 2^{nd} mark if i vs r and point from line used in $\mu = \sin i$ / $\sin r$) | (1) | 3 | | angle of incidence (for light travelling from denser medium) has angle of refraction of 90° (may refer to leaving along surface/boundary) | (1)
(1) | 2 | | Use of $\mu = \sin i / \sin r$ (accept stating $\sin c = 1 / \mu$)
$c = 49^{\circ}$ (n.b. ue applies) | (1)
(1) | 2 | | Example of calculation
$\sin c = 1 / \mu = 1 / 1.33$
$c = 49^{\circ}$ | | 5 | | | Measure angles of incidence and refraction (clear variants accepted or correct angles shown on a diagram) ('i' and 'r' accepted) Plots $\sin i$ vs $\sin r$ Correct gradient identified for their graph (assume $\sin i$ on y axis unless stated otherwise, assume statements using 'vs' or 'against' state y axis first) [If angle of reflection referred to instead of refraction, only allow $2^{\rm nd}$ mark] (Allow $3^{\rm rd}$ but not $2^{\rm nd}$ mark if i vs r and point from line used in $\mu = \sin i / \sin r$) angle of incidence (for light travelling from denser medium) has angle of refraction of 90° (may refer to leaving along surface/boundary) Use of $\mu = \sin i / \sin r$ (accept stating $\sin c = 1 / \mu$) $c = 49^{\circ}$ (n.b. ue applies) Example of calculation $\sin c = 1 / \mu = 1 / 1.33$ | Measure angles of incidence and refraction (clear variants accepted or correct angles shown on a diagram) ('i' and 'r' accepted) (1) Plots $\sin i$ vs $\sin r$ Correct gradient identified for their graph (assume $\sin i$ on y axis unless stated otherwise, assume statements using 'vs' or 'against' state y axis first) [If angle of reflection referred to instead of refraction, only allow y and are formula y and y and y and y are formula y and are formula y and y and y are formula y and y and y are formula y and y and y are formula for | ### Q37. | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|--|------------
--|------| | (i) | use of n₁sin i₁ = n₂sin i₂ with angle of incidence in plastic = 28° | (1)
(1) | Example of calculation
$n_1 \sin i_1 = n_2 \sin i_2$
1.47 sin (90° – 62°) = 1.00 sin i_2
$i_2 = 43.6$ ° | | | | angle of deviation = angle of
refraction - angle of
incidence | (1) | angle of deviation = 44° - 28° = 16° | 4 | | | angle of deviation = 16° | (1) | | | | (ii) | Going from the centre of the
lens towards the edge the angle
of incidence in the plastic
increases | (1) | | | | | The angle of deviation increases | (1) | Accept focal point for principal focus | 3 | | | (So) all rays cross (the axis) at
the principal focus | (1) | | | | (a) • diagram with (1) illuminated object, lens, screen and metre rule | | | uneoniinepi | ilysics | |--|-----|--|---|---------| | illuminated object, lens, screen and metre rule | | Acceptable Answer | Additional Guidance | Mark | | adjusted until clear image located on screen • object, image (1) distances calculated from metre rule readings • procedure (1) repeated for at least 4 other positions of the lens | (a) | illuminated object, lens, screen and metre rule • lens position (1) adjusted until clear image located on screen • object, image (1) distances calculated from metre rule readings • procedure (1) repeated for at least 4 other positions of | Example of calculation: $\frac{1}{u} = -\frac{1}{v} + \frac{1}{f}$ $y = mx + c$ | (4) | | Question
Number | Acceptable Answer | Additional Guidance | Mark | |--------------------|---|--|------| | (b) | against 1/u and intercept(s) of line read off | 1) Question 5 to be marked holistically 1) | | | | • $f = 1/intercept$ (| 1) | (3) | Q39. | Question
Number | Acceptable Answer | s | Additional Guidance | Mark | |--------------------|---|-----|---|------| | (i) | A ray diagram including: ray from top of object through centre of lens to retina | (1) | | | | | ray parallel to axis on
one side of lens and
through focal point on
other side | (1) | | | | | distance to near point = 6.0 cm | (1) | Correct calculation scores MP3 only | (3) | | Question
Number | Acceptable Answer | A | dditional Guidance | Mark | | (ii) | • use of $M = v/u$ (1) | | mple of calculation
2 cm / 6 cm = 0.33 | | | | • $M = 0.33 (2/3)$ (1) sf) ecf u from (i) | | - | | | | | | | (2) | ### Q40. | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|---|---|------| | (a) | use of a correct ray (1) | Ray through the principal focus and | | | | use of second (1) correct ray | Ray parallel to principal axis then through the principal focus | | | | indicates image
formed where rays (1)
cross | Ray through the optical centre of the lens Example of diagram: | | | | image drawn is real, (1) inverted and diminished | Object | | | | | ¥ | (4) | | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|---|--|------| | (b) | use of 1/f = 1/v + 1/u (1) for u estimate 4 - 10 mm use of P = 1/f (1) P = (120 D to 230 D) (1) | Example of calculation: Assuming the thickness of 8 mm: $1/f = 1/0.008 + 1/0.045$ $P = 1/f$ $P = 147 D$ Full credit for any thicknesses in range 4 - 10 mm | | | | | | (3) | #### Q41. | Question | Answer | | Mark | |----------|---|-------------------|------| | Number | | 130000 | | | (a) | change in direction / wavelength (of wave/ray/light) (when entering a medium where) the wave has a different velocity OR (when entering a medium where) the density is different | (1)
(1) | | | | the light travels at a lower speed in the air than in a vacuum | (1) | 3 | | (b) | identify angle of incidence = 64°
use of sin $i / \sin r$ = refractive index
$r = 63.9^{\circ}$ to at least 3 sf | (1)
(1)
(1) | | | | calculation of difference = 0.12° Example of calculation | (1) | 4 | | | $\sin r = \sin i \div \mu$ $= \sin 64^{\circ} \div 1.001$ $r = 63.88^{\circ}$ $\lim_{n \to \infty} \frac{1.00}{n} = 0.128$ | | | | | difference = 0.12° Total for question | | 7 | Q42. | Question | | | | | |----------|--|------------|--|------| | Number | Acceptable Answer | | Additional Guidance | Mark | | | • $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, re-arranged to make $\frac{1}{v}$ the subject | (1) | $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ $y = mx + c$ | | | | Comparison with y = mx + c | (1) | y = mx c | | | | So intercept equals 1/f | (1) | | | | | Use the y intercept to calculate a | (1)
(1) | | | | | value for f | (1) | | | | | Comment on the agreement with the initial determination including an | | | | | | appropriate justification | (1) | | | | | OR • Since $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, when $\frac{1}{u} = 0$, $f = v$ | (1) | | | | | • When $\frac{1}{v} = 0, f = v$ | (1) | | | | | Use the y intercept to calculate a value for f | (1) | | | | | Use the x intercept to calculate a value for f | (1) | | | | | Comment on the agreement with the
initial determination including an
appropriate justification | (1) | | | | | OR | | | | | | Read a pair of corresponding values | | | | | | from the graph | (1) | | 5 | | | • Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ to calculate a value | | | | | | $\operatorname{for} f$ | (1) | | | | | Read a second pair of corresponding | (1) | | | | | values from the graph | | | | | | • Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ to calculate a | | | | | | second value for f | (1) | | | | | Comment on the agreement with the
initial determination including an
appropriate justification | (1) | | | Q43. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|--|-----|--|------| | (a) | • Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ | (1) | Accept alternative method using | | | | Angle in cladding θ = 90(°) | (1) | $\sin c = \frac{1}{n}$ and $n = \frac{c}{v}$
to give $n = \frac{v_{cladding}}{v_{core}}$ Or $n = \frac{c}{v}$ | | | | Critical angle = 50.3(°) | (1) | n _{core} n _{cladding} | | | | | | Use of $\sin c = \frac{1}{n}$ with $n=1.2$ or 1.56 gains 1 mark | | | | | | Example of calculation
e.g. $1.56 \sin \theta_1 = 1.20 \sin \theta_2$ | | | | | | $1.56 \sin c = 1.20 (\sin 90^\circ)$ | | | | | | $\sin c = \frac{1.20}{1.56} c = 50.3(^{\circ})$ | | | | | | | 3 | | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|-----|---|------| | (b) | Left hand side of beam refracts away from
normal | (1) | Ignore any line continued beyond
cladding
Ignore any reflection | | | | Right hand side of beam totally internally
reflected | (1) | Reflection correct by eye Do not award if any line shown in cladding | | | | State Student C is correct | (1) | (MP3 dependent on MP1 and MP2) | | | | | | cladding cladding cladding | | | | | | Arrows on rays not needed | 3 | Q44. | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|---|--|---------| | * | This question assesses a student's ability to show a coherent and logic structured answer with linkages and fully-sustained reasoning. Marks are awarded for
indicative content and for how the answer is structured and shows lines of reason. The following table shows how the marks should be awarded for indicative content. Number of indicative marks awarded marking for indicative marking points seen in answer 6 4 5-4 3 3-2 2 1 1 0 0 | The mark for indicative content shows be added to the mark for lines of reasoning. For example, an answer with five indicative marking points which is partially structured with sor linkages and lines of reasoning score 4 marks (3 marks for indicative | ne
s | | *
(continued) | The following table shows how the man awarded for structure and lines of reason | | | |------------------|--|---|--| | | | Number of marks
awarded for structure
of answer and
sustained line of
reasoning | | | | Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout | 2 | | | | Answer is partially structured with some linkages and lines of reasoning | 1 | | | | Answer has no linkages
between points and is
unstructured | 0 | | | | | | | | | | | | | Question
Number | Acceptable answers | Additional
guidance | Mark | |--------------------|--|------------------------|------| | * (continued) | a polarising filter restricts the (electric field) vibrations of the (transverse) light wave to a single plane including the direction of propagation of the light the light incident on the filter must be plane polarised when the angle of rotation is a multiple of π rad (including zero), the plane of polarisation of the incident light is perpendicular to the transmission axis of the polarising filter hence the intensity of the transmitted light is zero when the angle of rotation is an odd multiple of π/2 rad the plane of polarisation of the incident light is the same as that of the transmission axis of the polarising filter hence maximum light is transmitted the intensity of the transmitted light varies from a minimum to a maximum as the angle of rotation varies as shown by the graph | | | | Question
Number | Acceptable answers | Additional
guidance | Mark | |--------------------|--|------------------------|------| | * (continued) | a polarising filter restricts the (electric field) vibrations of the (transverse) light wave to a single direction perpendicular to the direction of propagation of the light the light incident on the filter is plane polarised when the angle of rotation is a multiple of π rad (including zero), the plane of polarisation of the incident light is perpendicular to the transmission axis of the polarising filter hence the intensity of the transmitted light is zero when the angle of rotation is an odd multiple of π/2 rad the plane of polarisation of the incident light is the same as that of the transmission axis of the polarising filter hence maximum light is transmitted the intensity of the transmitted light varies from a minimum to a maximum as the angle of rotation varies as shown by the graph | | | Q45. | | | | - | |----------|---|-----|------| | Question | Answer | | Mark | | Number | | | | | (a) | (When light strikes a boundary with) angle of incidence greater than the critical | | | | | angle | | | | | Or When light within a denser medium strikes a boundary with a less dense | | | | | medium | (1) | | | | All of the light is reflected | | | | | Or none of the light is transmitted | | | | | Or none of the light is refracted | (1) | 2 | | Question
Number | Answer | Mark | |--------------------|--|------| | (b)(i) | Use of $\mu = \sin i / \sin r$ (1) | | | | $x = 41(^{\circ}) \tag{1}$ | 2 | | | | | | | Example of calculation | | | | $\sin x = \sin 60^{\circ} / 1.33$ | | | | $x = 40.6^{\circ}$ | | | (b) (ii) | Use of $\mu = \sin i / \sin r$ with $i = 90^{\circ}$ (accept stating $\sin c = 1 / \mu$) (1) | | | | $c = 49(^{\circ}) \tag{1}$ | 2 | | | | | | | Example of calculation | | | | $\mu = \sin 90^{\circ} / \sin c$ | | | | $\sin c = 1/\mu = 1/1.33$ | | | | c = 49° | | | (b) (iii) | Angle in gel \leq critical angle Or angle $y \leq$ critical angle | | | | Or (If angle $x = \text{angle } y$, then this corresponds to an) angle in air of 60° (1) | | | | | | | | Not total internal reflection so some light reaches screen | | | | Or Light will be refracted/transmitted so some light reaches screen (1) | 2 | | | | | Q46. | Question
Number | Answer | | Mark | |--------------------|--|------------|------| | (a) | Credit any sensible limitation Examples include: • blunt pencil, | (1) | | | | protractor divisions only to one degree, protractor of limited radius | | | | | method requires rays to be marked and then drawn on Limited precision – linked to limitation | (1) | 2 | | (b) | Use of refractive index = ratio of speeds
Speed = $2.0 \times 10^8 \text{ m s}^{-1}$ | (1)
(1) | 2 | | | Example of calculation
speed in plastic = 3.0×10^8 m s ⁻¹ ÷ 1.52
= 1.97×10^8 m s ⁻¹ | | | | (b)(ii) | Use of $\sin c = 1/\mu$, $\sin c = 1/n$ (or equivalent, but must allow full solution if used correctly without further equations) critical angle = 41° | (1)
(1) | 2 | | | Example of calculation
$\sin c = 1/1.52$
$c = 41^{\circ}$ | | | | *(c) | (QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) | | | | | The light strikes the sides at an angle greater than the critical angle | (1) | | | | It undergoes total internal reflection | (1) | | | | It is reflected again It strikes the other end at less than the critical angle Or It is transmitted at the final boundary Or the ray has zero angle of incidence at the first end and is transmitted | (1) | | | | undeviated | (1) | 4 | | | Total for question | | 10 | | Question
Number | Acceptable Answers | | Additional guidance | Mark | |--------------------|---|-----|--------------------------|------| | (i) | Focus image of distant/far
object on to a screen | (1) | MP2 dependent on MP1 | | | | Measure distance from lens to
screen | (1) | | | | | Or | | | | | | Use <u>parallel</u> rays of light | (1) | | 2 | | | Measure distance from lens to | (1) | | | | | the point where the rays | | | | | | converge | | | | | (ii) | Greater <u>refraction</u> | (1) | | | | | To converge (parallel) rays at a | (1) | | 2 | | | point closer to the lens | | | _ | | (iii) | Photograph 2 has a greater
magnification | (1) | | | | | so v is greater | (1) | | | | | since u is constant | (1) | | | | | So f is greater | (1) | MP5 dependent on MP2 and | | | | Hence photograph 2 taken with
lens of focal length 200 mm | (1) | MP4 | 5 | Q48. | Question
Number | Acceptable Ansv | vers | Additional Guidance | Mark | |--------------------|--|------|---|------| | (i) | drag + weight = upthrust use of ρ = m/V | | Example of calculation:
drag + weight = upthrust
drag = upthrust - weight
60000 = 400 ³ 0000003 - | | | | and $W = mg$
• use of $F = 6\pi \eta rv$ | | 6πηrv = 4πr3ρstoutg/3 - 4πr3ρqasg/3
v = 2(ρstout - ρgas)r2g/9η | | | | and $V
= 4/3\pi r^3$ | (1) | | (3) | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|--|---------------------|------| | (ii) | low speed <u>OR</u> laminar flow
<u>OR</u> not turbulent flow | | (1) | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---|--|------| | | use of v = 2(ρ_{stout} - ρ_{gas})r²g/9η (1) use of v = s/t (1) time = 29 s (1) comment on the difference with 120 seconds OR an attempt to account for the difference | Example of calculation:
$v = 2 (1.007 \times 10^3 \text{ kg m}^{-3} - 1.223 \text{ kg m}^{-3}) \times (61 \times 10^{-6} \text{ m})^2 \times 9.81 \text{ N kg}^{-1}/9 \times 2.06 \times 10^{-3} \text{ Pa s}$ $= 3.96 \times 10^{-3} \text{ m s}^{-1}$ $t = 0.115 \text{ m}/3.96 \times 10^{-3} \text{ m s}^{-1}$ $= 29 \text{ s}$ Actual time much less than the manufacturers time therefore not a valid statement OR reference time to reach terminal velocity OR there is turbulent flow | (4) | | Question
Number | Answer | | Mark | |--------------------|--|-------------------|------| | *(a) | (QWC – Work must be clear and organised in a logical manner using technicalwording where appropriate) | | | | | a standing/stationary wave | (1) | | | | Waves from the generator are reflected at the end Or waves are travelling in both directions | (1) | | | | (When the two) waves (meet they) superpose/undergo superposition | (1) | | | | Producing points where the waves are in phase and points where they are in antiphase | | | | | Or producing points of zero amplitude and points of maximum amplitude OR producing nodes and antinodes | (1) | 4 | | (b) | Wavelength = 2 × 1.8 m
Use of speed = wavelength x frequency
Speed = 1200 m s ⁻¹ | (1)
(1)
(1) | 3 | | | Example of calculation
$\lambda = 2 \times 1.8 \text{ m}$
$v = 330 \text{ Hz} \times 3.6 \text{ m}$
$v = 1188 \text{ m s}^{-1}$ | | | | (c)(i) | Point is a node, so zero amplitude OR Point is a node, so string not moving | (1) | | | | So no energy absorbed Or Waves continue to move after superposition | (1) | 2 | | (c)(ii) | (Original frequency x 2) = 660 Hz | (1) | 1 | | (c)(iii) | Captured twice per cycle = 1320 Hz (allow ecf from (c) (iii)) If more than 1320 Hz will be captured at points other than max amplitude | (1)
(1) | 2 | | (d) | Scale divisions of 20 Hz Or Wide pointer Or nominal output (only) | (1) | | | | Lack of precision (scale related) Or Lack of accuracy (output related) | (1) | 2 | | | Total for question | | 14 |