4	`
7	١
	•

	The ult	sts believe that our universe began with a big bang, and is presently expanding. imate fate of the universe depends upon the total amount of matter in the universe. ssibility is a big crunch where the universe eventually contracts back into a point site density. A universe with such a future would be described as being
	\times	A closed.
	\times	B critical.
	\times	C flat.
	\times	D open.
2)		
		Hertzsprung-Russell diagram our Sun is located on the main sequence. Which of llowing statements is correct?
	\boxtimes	A All giant stars are larger and cooler than our Sun.
	\boxtimes	B All giant stars are larger and hotter than our Sun.
		C All white dwarf stars are smaller and hotter than our Sun.
	\boxtimes	D All white dwarf stars are hotter and brighter than our Sun.
3)		
	In w	hich of the following situations would a blue shift be observed?
	\boxtimes	A Source and observer moving with the same velocity.
	\boxtimes	B Source moving along a circular path around an observer.
	\times	C Source moving away from a stationary observer.
	\mathbb{K}	D Source moving towards a stationary observer.
4)		
		d Y are identical stars. When viewed from Earth the flux from star X is 4 times the from star Y. Which of the following explanations is possible?
	\times	A X is twice as far away as Y.
	\times	B X is four times as far away as Y.
	×	C Y is twice as far away as X.
	100	D V is four times as far away as Y

5)		
	On a H	ertzsprung-Russell diagram, the main sequence shows
	\times	A only the most luminous stars.
	\times	B only the most massive stars.
	\times	C stars near the end of their lives.
	\times	D stars principally fusing hydrogen.
6)		
	The ult	imate fate of the Universe is uncertain because
	\bowtie	A atmospheric absorption limits our observations.
	\bowtie	B our galaxy is not typical of other galaxies in the Universe.
	\bowtie	C the total average density of the Universe is uncertain.
	\bowtie	D we cannot observe very distant galaxies.
7)		
		stant stars are observed through a telescope. Star A is observed to be half as as star B. Star A is calculated to be twice as far away as star B.
	Which	of the following is correct?
	\times	A Star A has half the luminosity of star B.
	\times	B Star A has the same luminosity as star B.
	\times	C Star A has twice the luminosity of star B.
	\times	D Star A has 8 times the luminosity of star B.
8)		
	The interior of a star has conditions that are ideal for sustainable fusion reactions. The general conditions for fusion require a very large	
	\bowtie	A amount of hydrogen and temperature.
	\bowtie	B amount of hydrogen and pressure.
	\times	C density and pressure.
	\times	D density and temperature

٥,		<u>a-ieveipitysics.com</u>
9)		
		nt theories give a number of alternatives for the future evolution of our universe. ding to current theory, an open universe
	\times	A eventually reaches a maximum size.
	\bowtie	B expands forever.
	\bowtie	C has an unpredictable future.
	\bowtie	D is a steady state universe.
10)		
		is estimated to have approximately the same surface temperature as the Sun, but an 1% of the Sun's luminosity.
	The sta	ar is best classified as a
		main sequence star.
	⋈ B	red dwarf star.
		red giant star.
	\boxtimes D	white dwarf star.
11)		
		tauri is one of the nearest stars to our Sun. The surface temperatures of these two are about the same. α-Centauri has a 20% greater diameter than the Sun.
	The ratio of the luminosity of α-Centauri to the luminosity of the Sun is about	
		1.2
	⊠ B	1.4
	⊠ C	1.7
	⊠ D	2.1
12)		
	Scientists cannot be sure what their current models predict for the ultimate fate of the universe because	
		of the matter-antimatter asymmetry.
		the average density of the universe is uncertain.
		the Big Bang is just a theory.

 \square **D** the nature of dark matter is unknown.

Dark energy appears to be increasing the rate at which the universe expands.

As a result it is more likely that the universe is

- A closed.
- B open.
- C infinite in size.
- D younger than we thought.

14)

Which letter, A, B, C or D, indicates the region where a red giant star would be shown?

- \mathbf{X} A
- \mathbb{Z} B
- \square **D**

Which letter, A, B, C or D, indicates the region where a main sequence star would be shown?

- \mathbf{A}
- ⊠ B
- \square **D**

16)

When light from the galaxy in Andromeda is analysed, it is found that the wavelengths are shorter than expected.

This tells us that the galaxy is

- A moving towards us.
- **B** moving away from us.
- C a very distant galaxy.
- **D** rotating on an axis.

17)

A standard candle, within a nearby star cluster, is a distance D from the Earth. It produces a radiation flux F at the surface of the Earth.

The flux at the surface of the Earth, for a standard candle of the same luminosity in a second star cluster, is 4F.

The distance of the second star cluster from the Earth is

- \triangle A 4D
- \boxtimes **B** 2D
- \square C $\frac{D}{2}$
- \square **D** $\frac{D}{4}$

18)

Star A has twice the radius of star B but only half the surface temperature.

The ratio of the luminosity of star A to luminosity of star B is

- **■ B** 1:2
- **C** 2:1
- **■ D** 4:1

19)

Exoplanets are planets orbiting stars other than our own Sun. Most exoplanets discovered so far are giant planets similar to the planet Jupiter. The exoplanet Kepler-7b has a mass about 0.43 times the mass of Jupiter, and a radius about 1.6 times the radius of Jupiter.

Take the gravitational field strength at the surface of Kepler-7b to be g_K , and the gravitational field strength at the surface of Jupiter to be g_L .

The ratio $\frac{g_K}{g_J}$ is

- **■ B** 0.27
- **C** 0.69
- **■ D** 1.1

20)

A number of conditions must be met if the fusion of hydrogen nuclei is to occur. Which condition, in a sample of hydrogen, is **not** necessary for nuclear fusion to occur?

- A very high density
- B very high mass
- C very high pressure
- D very high temperature

21)

Which letter A, B, C or D represents the region on the diagram where our Sun would be shown?

- \mathbf{X} \mathbf{A}
- \mathbf{B}
- \square C
- \square **D**

Which letter A, B, C or D represents the region on the diagram where a white dwarf star would be shown?

- \mathbf{X} \mathbf{A}
- \mathbb{Z} B
- \mathbf{X} **D**

23)

Which letter A, B, C or D represents the region on the diagram where our Sun would be shown?

- \mathbb{X} \mathbf{A}
- \mathbb{Z} **B**
- \square **D**

2	1	١
_	4)

		esprung-Russell diagram is plotted for an old star cluster. Compared with a cluster containing a similar number of stars there will be fewer
	\times	A light main sequence stars.
	\times	B massive main sequence stars.
	\times	C red giant stars.
	\boxtimes	D white dwarf stars.
25)		
		25% of the mass of our Universe is thought to consist of dark matter. A key y of dark matter is that it
	\times	A absorbs all electromagnetic-radiation.
	\boxtimes	B cannot be detected.
	\boxtimes	C emits no detectable electromagnetic-radiation.
	\times	D exerts no gravitational force.
26)		
		ologists describe the universe as being open, closed or flat.
	\boxtimes	A has always been the same size.
	\times	B has a maximum size.
	\times	C has an uncertain future.
	\boxtimes	D will expand forever.
27)		
		ars with the same luminosity might produce different radiation fluxes at Earth. This is illy due to the stars having different
	\boxtimes	A diameters
	\boxtimes	B distances from the Earth
	\boxtimes	C motions through the Universe
	\times	D surface temperatures