Name:
Work and Energy
Mark Scheme
Date:
Time:
Total marks available:
Total marks achieved:

Mark Scheme

Q1.

Question Number	Answer	Mark
	A	1

Q2.

Question Number	Acceptable answers	Additional guidance	Mark
	С	mgh	1
	A uses the distance AB rather than height B uses a component of height D uses a component of height		

Q3.

Question Number	Answer	Mark
	A	1

Q4.

Question Number	Answer	Mark
	C	1

Q5.

Question Number	Answer	Mark
	C	1

			theonliner	hysicstutor.com
(Question	Answer	Mark	July 5105tator.55111
-				

Question Number	Answer	Mark
	В	1

Q7.

Question Number	Answer	Mark
	A	1

Q8.

Question Number	Acceptable Answers	Reject	Mark
	C		1

Q9.

Questio Number	Answer	Mark
	C	1

Q10.

Question Number	Acceptable Answer		Additional Guidance	Mark
	• Use of $P = VI$ Or use of $\triangle E_{\text{grav}} = mg \triangle h$	(1)	Accept use of efficiency = useful energy output total energy input corresponding times	
	Use of efficiency = useful power output total power input	(1)	Example of calculation	
	• Efficiency = 0.75 to 0.78 (or 75 % to 78%)	(1)	$P_{\text{motor}} = (85 \times 10^{-3}) \text{ A} \times 3.0 \text{ V} = 0.255 \text{ W}$	
			$P_{\text{block}} = 0.05 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 0.40 \text{ m s}^{-1} = 0.196 \text{ W}$	
			Efficiency = $\frac{0.196 \text{ W}}{0.255 \text{ W}} = 0.77 \text{ (no unit)}$	3

Q11.

Question Number	Acceptable Answer		Additional Guidance	Mark
	As the speed increases, drag increases	(1)	MP1: accept 'air resistance' for 'drag'	
	There is greater fuel consumption to maintain a higher constant speed Or the fuel economy reduces at higher speeds to maintain a constant speed	(1)		
	Statement linking fuel economy to engine efficiency	(1)	MP3 e.g. The efficiency of the engine may increase (with speed) but the fuel economy decreases Or you can't compare efficiency which is a ratio with fuel consumption/economy which is a volume	•
				3

Q12.

Question Number	Acceptable answers		Additional guidance	Mark
	Work done (by cyclist) results in a <u>transfer</u> of energy	(1)		
	 initially there is an increase in E_k of (cyclist and bicycle) Or work done is transferred/converted to other forms of energy 	(1)		
	 when the velocity of the cyclist is constant, all the energy is being transferred to other forms 	(1)		3

Question Number	Acceptable Answer		Additional Guidance	Mark	
	• Use of $W = QV$	(1)	Example of calculation:		
	• Use of $KE = \frac{1}{2}mv^2$	(1)	$\frac{1}{2}mv^2 = eV$		
	• Use of $1u = 1.66 \times 10^{-27} \text{ kg}$	(1)	$v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \mathrm{C} \times 8.5 \times 10^{3} \mathrm{V}}{(34.97 \times 1.66 \times 10^{-27}) \mathrm{kg}}} = 2.16 \times 10^{5} \mathrm{ms}^{-1}$		
	• $v = 2.16 \times 10^5 \text{ (m s}^{-1}\text{)}$	(1)		4	

Q14.

Question Number	Answer		Mark
(a)	Force × distance moved in the <u>direction</u> of the (applied) force (An equation with defined terms and the direction stated of the distance can score this mark)	(1)	1

Question	Answer	Mark
Number		
(b)	Use of KE = $\frac{1}{2}mv^2$ (with any velocity in m s ⁻¹) (1)	
	Use of Work done = Fd (with any energy) (1)	
	d = 85 m (1)	
	Or	
	Use of $F = ma$ to find the acceleration (1)	
	Use of suitable equation(s) of motion to find the braking distance (1)	
	d = 85 m (1)	3
	Example of calculation	
	$KE_{before} = \frac{1}{2} \times 1.5 \times 10^{3} \text{ kg} \times (24.6 \text{ m s}^{-1})^{2} = 4.54 \times 10^{5} \text{ J}$	
	$KE_{after} = \frac{1}{2} \times 1.5 \times 10^3 \text{ kg} \times (13.4 \text{ m s}^{-1})^2 = 1.35 \times 10^5 \text{ J}$	
	Transfer of KE = $4.54 \times 10^5 \text{ J} - 1.35 \times 10^5 \text{ J} = 3.19 \times 10^5 \text{ J}$	
	$3.19 \times 10^5 \text{ J} = 3750 \text{ N} \times d$	
	d = 85.1 m	

Q15.

Question Number	Answer	Mark
(a)	The balloon has the maximum/greatest speed/velocity Or the greatest distance is covered in the shortest/same time (1)	1

Question Number	Answer	Mark Mark
(b)	Use of $\Delta E_{\text{grav}} = mg\Delta h$ (with a Δh and not just h) (1)	
	Use of average rate of energy transfer = $\frac{\text{energy}}{0.15 \text{ s}}$ (1) (do not penalise power of ten errors for MP2)	
	Average rate of energy transfer = 0.18 – 0.19(W) (1)	3
	Example of calculation $\Delta E_{\text{grav}} = 0.004 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times (1.8 \text{ m} - 1.1 \text{ m}) = 0.027 \text{ J}$ Average rate of energy transfer = $\frac{0.027 \text{ J}}{0.15 \text{ s}} = 0.18 \text{ W}$	

Q16.

		<u>tneonii</u>	nephysic
Question Number	Acceptable Answers	triooriii	Mark
(a)(i)	Energy = power × time \mathbf{Or} power = $\frac{\text{energy}}{\text{time}}$ \mathbf{Or} see 4.2×0.4	(1)	
	Energy = $1.7 (J)$	(1)	2
	Example of calculation Energy = 4.2 W × 0.4 s Energy = 1.68 (J)		

Question Number	Acceptable Answers		Mark
(a)(ii)	Use of $E_k = \frac{1}{2} mv^2$	(1)	
	$v = 5.9 / 6.0 \text{ ms}^{-1} \text{ (ecf)}$	(1)	2
	Example of calculation		
	$v = \sqrt{\frac{2 \times 1.68 \mathrm{J}}{0.095 \mathrm{kg}}}$		
	$v = 5.9 \text{ m s}^{-1}$		r.

Question	Acceptable Answers	Mark
Number		
(a)(iii)	Energy is dissipated to heat	
	Or work is done against friction	
	Or not all the energy becomes kinetic energy	
	Or air resistance on car	
	Or friction between car/wheels/pin and track	1
	Or resistance in motor (1)	1

Question Number	Acceptable Answers	Mark
(b)	No resultant force is acting on the car (do not credit use of external force) (Car) continues moving: in a straight line Or in same direction Or with same velocity. (1)	2
	Total for question	7

Question		_theon	linephysic
Number			Mark
(a) (i)	Use of equation of motion suitable for a, e.g. $v = u + at$	(1)	
	$a = 16.3 \text{ m s}^{-2}$ (2.1 ×10 ⁵ km h ⁻² or 58.7 km h ⁻¹ s ⁻¹)	(1)	2
	Example of calculation		
	37.5 m s ⁻¹ - 0		
	a = 2.3 s		
(-) (!!)	$a = 16.3 \text{ m s}^{-2}$ Use of $E_k = \frac{1}{2} mv^2$	(1)	
(a) (ii)	Use of $E_k - \frac{7}{2}mV$ Use of $P = E/t$	(1) (1)	
	$Power = 3.1 \times 10^6 \text{ W}$	(1)	
	Or		
	Use of $F = ma$ (must be a from (i)) and Use of equation to find		
	distance and use of work done = Fd	(1)	
	Use of $P = E/t$ Power = 3.1×10^6 W	(1)	3
	(distance = 43 m)	(1)	3
	Examples of calculations		
	$E_{\rm k} = \frac{1}{2} \times 10~000~{\rm kg} \times (37.5~{\rm m~s}^{-1})^2 = 7.03 \times 10^6~{\rm J}$ Power = $7.03 \times 10^6~{\rm J} / 2.3~{\rm s} = 3.1 \times 10^6~{\rm W}$		
	Power = $7.03 \times 10^{6} \text{ J} / 2.3 \text{ s} = 3.1 \times 10^{6} \text{ W}$		
(a) (iii)	Energy transferred by heating		
	Or energy transferred due to friction		
	Or work done against friction		
	Or idea that more energy required (due to energy transfer) due to friction.	(1)	1
	inetion.	(1)	1
	(do not accept 'lost' but accept air resistance as an alternative to		
*(b)	friction) (QWC – Work must be clear and organised in a logical manner using	-	
(6)	technical wording where appropriate)		
	larger force is needed Or the (same) force is insufficient	(1)	
	need same acceleration/(max) velocity OR acceleration/(max)		
	velocity is too small	(1)	
	more energy needed (to reach top) Or insufficient energy (to reach top)	(1)	3
(c)	Viscosity of oil decreases (with increasing temperature) Or the (warm)		
	oil is less viscous	(1)	
	(accept a reverse argument e.g. when cold oil is more viscous)		
	Lower frictional/resistive force Or less viscous drag	(1)	2
	Total for question		11

Question Answer Number		onlinep _{Mark}
(-)(-)		
(a)(i) Convex curve drawn from the box to the drop zone	(1)	1
(a)(ii) Use of $s = ut + \frac{1}{2}at^2$	(1)	
t = 3.6 (s)	(1)	2
Example of calculation		
$63 \text{ m} = 0 + (\frac{1}{2} \times 9.81 \text{ m s}^{-2} \times t^2)$		
t = 3.6 s		
(a)(iii) Use of speed = $\frac{\text{distance}}{\text{time}}$	(1)	
Distance = 270 m (ecf)	(1)	2
[300 m using the show that value]	(1)	
Example of calculation		
$75 \text{ m s}^{-1} = \frac{\text{distance}}{36 \text{ s}}$		
Distance = 270 m		
(b)(i) Use of GPE = mgh	(1)	
GPE = 6.2 (kJ)	(1)	2
(A unit is required for an answer in J to score MP2)		
Example of calculation		
$GPE = 10.0 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 63 \text{ m}$		
GPE = 6180 J		
(b)(ii) Use of KE = $\frac{1}{2} mv^2$	(1)	
KE = 28.1 (kJ)	(1)	2
(A unit is required for an answer in J to score MP2)		
Example of calculation		
$KE = \frac{1}{2} \times 10.0 \text{ kg} \times (75 \text{ m s}^{-1})^2$		
KE = 28 125 J		
(b)(iii) KE at bottom = 34.3 kJ (ecf)	(1)	1
Example of calculation		
KE at bottom = $6180 \text{ J} + 28 125 \text{ J} = 34 305 \text{ J}$		
(b)(iv) Work is done against air resistance Or energy transferred due to air resistan	ce (1)	1
(c) Reduces the acceleration of the package Or reduces the speed on impact		
of the package Or has a lower terminal velocity Or less (resultant) force		
on the package	(1)	1
Total for question		12

Q19.

Question Number	Answer		:heonlineph Mark
(a)	Same (downwards) acceleration Or acceleration = g (accept constant acceleration)	(1)	1
(b)(i)	The ball is in contact with the floor (accept the ball bounces)	(1)	1
(b) (ii)	Lower gradient Or the lines would be not be as steep	(1)	1
(c)	Use of equation(s) of motion to find s Or use of distance = area under the graph Or use of GPE = KE $s = 1.1 \text{ m} - 1.4 \text{ m}$ Example of calculation $(4.7 \text{ m s}^{-1})^2 = (0 \text{ m s}^{-1})^2 + (2 \times 9.81 \text{ m s}^{-2} \times s)$ $s = 1.13 \text{ m}$	(1) (1)	2
(d)(i)	Use of KE = $\frac{1}{2} mv^2$ KE = 1.1 – 1.3 (J) (no ue) Example of calculation KE = $\frac{1}{2} \times 0.40 \text{ kg} \times (2.4 \text{ m s}^{-1})^2$ = 1.15 J	(1) (1)	2
(d)(ii)	Use of GPE = KE h = 0.27 m - 0.32 m (ecf from 16(d)(i)) (If area under graph or an equation of motion is used e.g. $h = \frac{(u+v)t}{2}$ or $v^2 = u^2 + 2as$ only MP2 can be scored)	(1) (1)	2
(e)	Example of calculation $h = \frac{1.2 \text{ J}}{0.4 \text{ kg} \times 9.81 \text{ Nkg}^{-1}}$ $h = 0.31 \text{ m}$ (Elastic potential) energy transferred to thermal energy		
(e)	Or energy dissipated as heat	(1)	1
	Total for question		10